

MIM / PIM Application:

Laboratory Mixer, Compounding, Rheology

Matthias Jährling

Senior Application Manager Material Characterization Products

The world leader in serving science

Content

- **Introduction Powder Injection Moulding Process**
- **Laboratory Mixers**
	- **- Laboratory Mixers for Compound Development**
- **Twin Screw Extruders**
	- **- Twin-Screw Compounding for Feedstock Production**
- **Micro Injection Molding**
	- **- Small Scale Sample-Preparation for mechanical Testing**
- **C ill Rh l Capillary Rheology**
	- **- Rheological Characterization for optimized Flow Properties**
- **Questions**

INTRODUCTION POWDER INJECTION MOLDING PROCESS

Principle PIM-Process:

- **The typical PIM product combines a relatively small size, high complexity of shape, high strength and moderate to close dimensional t l o erances.**
- **PIM is highly competitive where costly machining operations can be avoided, and when the number of parts is high enough, to justify the cost f ld of a mold.**
- **The PIM process allows a high degree of automation and is therefore most competitive in volume production.**
- **PIM parts can be designed with extremely thin walls, fine bore holes, threads and other details. This helps to save weight and material cost.**
- PIM is limited by the relatively high raw material cost, compared to cast **metals and alloys. Because of that, PIM parts are usually rather small, where the material cost of a small part have a smaller portion of the total manufacturing cost.**

LABORATORY MIXERS FOR COMPOUND DEVELOPMENT

RheoDrive + Mixer/Extruder Sensor

⁼*PolyLab System*

History: Old Torque Rheometer Models

PolyLab OS – New Design

PolyLab OS – New Design

PolyLab OS – Flexible Design

Laboratory Mixers - *measuring principle*

Shearing of a test sample in a heated mixing chamber with counter rotating rotors 3 2 Test results: → Torque Melt temperature

Laboratory Mixers - *Rheogram*

Laboratory Mixers - *Testing*

Rotors and Applications

PIM: Critical (powder) loading of feedstock

Ref. LR45-e, Joseph A. Krudys, Ref. LR45 e, ThermoHAAKE 2002

The erratic reading in the steps for increased powder load show the limiting powder [%] in the mixture.

Contact free and fast, high resolution torque sensors have a big advantage over old style "dynamometer" where the reaction of a heavy motor is measured, the erratic reading (here key feature) is damped or smoothed

Nanoscale Ceramic Al 3O 2 Powders for PIM

Juliane Kraus (Ref.) describes in detail how to optimize a binder system (stearic acid & stearic acid amide) using a laboratory mixer (Rheomix600 with Roller Rotors).

- •**Type modifier (better: lower torque with stearic acid amide)**
- •**Minimum content of this modifier (Torque depends only on [%]powder)**

Differentiation of fresh and re-grinded PIM compounds

TWIN-SCREW COMPOUNDINGFOR FEEDSTOCK PRODUCTION

Extrusion Principle:

Extruder types

Twin-Screw Extruders – Typical Processing Tasks

- •**Melting / Plasticizing**
- •**Mixing / Homogenising**
- •**Cooking**
- •**Alloying of different polymers**
- • **Chemical Reactions R ti E t i Reactive xtrusionPolymerisation**
- • **Incorporation of fillers such as: Talcum CaCO Talcum, 3, Carbon Black Black, …**
- •**Degassing / Venting of Monomers, Solvents, …**
- • **Incorporation of reinforcing additives such as: C b fib CNT Gl fib N Cl Car bon fibres, CNT, Glass fibres, Nano a y, …**
- •**Dispersion of Pigments**
- •• Modifying Polymers by incorporation of Plasticizers, cross-linking Agents,
Flame Retardants, UV-Stabilisers, …

Twin Screw Compounding

Segmented Screw Design

Parallel twin-screw extruder - Screw Elements:

Conveying elements:

Profiles with long helix are used:

- in the feeding sections
- for melt exchange (longitudinal mixing)
- for degassing (venting)

Profiles with short helix are used:

- for pressure built up
- -- in front of kneading elements

- **Self wiping geometry**
- **Only partial filled**
- **Different pitches**
	- \bullet 1 L/D: - Standard conveying
	- 1.5 L/D: In the feed zones
	- 2/3 L/D: Building up pressure -For compressing material with low bulk density

Mixing Elements :

• **Mixing Elements are used to: Mixing are**

 introduce shear energy to the extruded materials

• **The disks are arranged in different offset angles used for:**

- melting
- shearing
- mixing
- dispersing

Screw Elements: Mixing Elements

30° Offset – conveying and the solution of the — conveying Shorter residence timeLower shear

0° Offset – — not conveying Longer residence time Higher shear

Dispersive & Distributive Mixing

Mixing Element 040-0104 $\frac{1}{4}$ L/D

- Narrow Disks:
	- melt division
	- -- distributive mixing

Mixing Element 041-2632 $\frac{1}{2}$ L/D

- Wider Disks:
	- extensional shear
	- dispersive mixing

Typical screw configuration – PIM application

Process 11: Highlight Features

Bench-Top Design with integrated Electronics

Process 11 TSE: Removable Top Half Barrel

Process 11 TSE: Segmented Screws

Process 11 – Easy to Use Touchscreen

- **All Set-Points:**
	- Temperatures
	- Screw Speed
	- Feed rate(s)
- **Processing data**
	- Torque
	- Pressure
	- Melt Temperature
- **Processing trend**
	- *M, n, p, T_M, FR* vs. time
- **Temperature trend**
- **Temperature profile**
- **Recipe storage**
- **Alarm history**

Thermo Scientific Process 11: PIM-Compounding

A HAAKE PolyLab OS System with RheoDrive16, a Rheomex PTW16/25 XL parallel twin screw extruder and two HAAKE metering feeder were used to compound a polyethylene wax based binder with Zirconium-Oxide (85/15 % wt/wt) :

•**T diff t f d th d d Two differen feed methods were used:**

- *1) Split feed with two feeders, both in the main feed port of the extruder*
- *2) Split feed with the first feeder (binder) in the main feed port and feeding of the ceramic powder into a secondary feed port along the* This is material producti *extruder barrel*

Typical PIM part above

This is material pro duction for Micro PIM parts (left)

Ref.: Picture: ARC Seibersdorf research center Micro PIM part

Example: Ceramics for PIM – Feeding options (2)

Two different feed methods were used:

1) Split feed with two feeders, both in the main feed port of the extruder

2) Split feed with the first feeder (binder) in the main feed port and feeding of the ceramic powder into a secondary feed port along the extruder barrel

Result:

The separate feeding of wax and powder gave the better homogeneity (less agglomerates)
and will reduce wear for extruder and extruder screw.

LR-56e Example PIM results

Raw material (a,b) and Feedstock Product samples (c-g):

- a) wax (PE)
- b) ceramic powder $(ZrO₂)$
- c) disks
- d) pellets
- e) tensile bar
- f) strands
- g) sheet

Classic Strand Pelletizing

Face-Cut Pelletizing

Face-Cut Pelletizing

PIM compounding with TSE24MC

Example: Compounding of a PIM-Compound

MICRO INJECTION MOLDING SMALL SCALE SAMPLE-PREPARATION

HAAKE MiniJet Pro

Micro Injection Molding Machine for the production of specimens for tests like:

- Tensile tests (i.e. ASTM D638, ASTM D1708, ISO 178, ISO 527–2)
- Charpy Impact Strength (ISO 179)
- Izod Impact Testing (ISO 180, ASTM D256, ASTM D4508, ASTM D4812)
- Rheological tests
- DMA
- \bullet Distortion Temperature (ASTM E2092)
- Colour matching
- Tablets for bioavailability studies
- Customized solutions

HAAKE MiniJet – vertical alignment

N merical controlledumerical

•

•

- 2 Temperatures controlled
- • Pressure controlled (0.1 bar)
	- Process controlled1. Injection pressure & duration,
		- 2. Post pressure & duration
- •All parameter can be stored
- •Language: English, German
- •Units: bar, psi - °C, F, K

Improved handling

- •No pressing lever necessary
- •Easy filling of pellet samples
- •Active liquid cooling option

HAAKE MiniJet – Micro Injection Molding

HAAKE MiniJet – Micro Injection Molding

HAAKE MiniJet – Molds

HAAKE MiniJet – Molds

HAAKE MiniJet – Injection Molding with 2g – 15g feedstock

Example: MIM-Compounding

92% Metal-Powder +8% Polymer-Binder

Twin-Screw-Compounding &Face-Cut- Injection -Molding **Pelletizing**

Thermo Scientific Process 11 & StrandLine & MiniJet

CAPILLARY RHEOLOGY RHEOLOGICAL CHARACTERIZATION FOR OPTIMIZED FLOW PROPERTIES

Rheology *Newtonian plate model*

Pressure flow of a Newtonian liquid

Rod Capillary

Typical viscosity function of a polymer melt

- 1) At rest each macromolecule can be found in a state of a three dimensional coil, that is entangled several times with their neighbor macromolecules.
- 2) With increasing shear the molecules are more and more orientated in the shear direction. The molecules disentangle to a certain extend, which lowers their flow resistance.
- 3) At infinite shear (theoretical!) the molecules are totally disentangled and aligned in the shear direction. Further increase in shear doesn't reduce their flow resistance an ymore

Capillary Test - Measurement Principle

- **Sample is pressed with defined speed through the capillary.**
- **This volume flow (v) results in a constant shear rate in the capillary**
- **The higher the sample viscosity the higher it's resistance to flow out of the capillary.**
- **A higher viscous sample generates a higher pressure** *will a millimum* pressure in front of the capillary.
	- **The measured pressure is related to the shear stress.**

$$
\text{Viscosity} = \frac{\text{Shear Stress}}{\text{Shear Rate}}
$$

Capillary Test - Measurement Principle

- To measure a viscosity curve the shear rate is______ changed by step wise changing the flow speed
- At each speed step the equilibrium pressure is measured and theshear stress is calculated
- From shear rate and shear stress the viscosity is calculated

Viscosity measurements of ceramic material

Capillary Dies

Rod Capillary Die

Calculations for Newtonian liquids:

Extruder Capillary Rheology

• **Measurin g Modes**

PolySoft Software – Measurement Modes

Cutting and manual entry (external balance)

Automatic measurement

PolyLab OS – PolySoft Job Controller

PolyLab OS – PolySoft Regression

The whole Rheology

Flow curve LLDPE (220°**C)**

Relevant shear rates for some technical processes

Flow curve LLDPE (220 °**C)**

SCIENTIFIC

ThermoFisher SCIENTIFIC

The world leader in serving science

Questions ???

ThermoFi SCIENTIFIC